目标检测汇总

目标检测(物体检测, Object Detection) 专知荟萃

  • 入门学习
  • 进阶文章
  • 综述
  • Tutorial
  • 视频教程
  • 代码
  • 领域专家

入门学习

  1. 图像目标检测(Object Detection)原理与实现 (1-6)
  2. . 基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文
  3. R-CNN:论文笔记
  4. Fast-RCNN:
  5. Faster-RCNN:
  6. FPN:
  7. R-FCN:
  8. SSD:
  9. YOLO:
  10. DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统
  11. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]
  12. 深度学习论文笔记:DSSD - [http://jacobkong.github.io/posts/2938514597/]
  13. DSOD
  14. Focal Loss:
  15. Soft-NMS:
  16. OHEM:
  17. Mask-RCNN 2017:
  18. 目标检测之比较
  19. 视觉目标检测和识别之过去,现在及可能

进阶文章

  1. Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:

  2. R-CNN

    Rich feature hierarchies for accurate object detection and semantic segmentation:

  3. Fast R-CNN

    :

  4. Faster R-CNN

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:

  5. Scalable Object Detection using Deep Neural Networks

  6. Scalable, High-Quality Object Detection

  7. SPP-Net

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  8. DeepID-Net

    DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

  9. Object Detectors Emerge in Deep Scene CNNs

  10. segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  11. Object Detection Networks on Convolutional Feature Maps

  12. Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  13. DeepBox: Learning Objectness with Convolutional Networks

  14. Object detection via a multi-region & semantic segmentation-aware CNN model

  15. You Only Look Once: Unified, Real-Time Object Detection

  16. YOLOv2 YOLO9000: Better, Faster, Stronger

  17. AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  18. DenseBox: Unifying Landmark Localization with End to End Object Detection

  19. SSD: Single Shot MultiBox Detector

  20. DSSD : Deconvolutional Single Shot Detector

  21. G-CNN: an Iterative Grid Based Object Detector

  22. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  23. A MultiPath Network for Object Detection

  24. R-FCN: Object Detection via Region-based Fully Convolutional Networks

  25. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  26. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

  27. Feature Pyramid Networks for Object Detection

  28. Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  29. DSOD: Learning Deeply Supervised Object Detectors from Scratch

  30. Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research

    1. Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research
    2. http://arxiv.org/abs/1703.06870

综述

  1. 深度学习之 “物体检测” 方法梳理
  2. 地平线黄李超开讲:深度学习和物体检测!:
  3. 对话CVPR2016:目标检测新进展:
  4. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:
  5. 基于深度学习的目标检测研究进展
  6. 讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望

Tutorial

  1. CVPR’17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick
  2. ICCV 2015 Tools for Efficient Object Detection
  3. Object Detection
  4. Image Recognition and Object Detection : Part 1
  5. R-CNN for Object Detection

视频教程

  1. cs231 第11讲 Detection and Segmentation
  2. Deep Learning for Instance-level Object Understanding by Ross Girshick.

代码

  1. R-CNN
  2. Fast R-CNN:
  3. Faster R-CNN
  4. SPP-Net
  5. YOLO
  6. YOLOv2
  7. SSD
  8. Recurrent Scale Approximation for Object Detection in CNN
  9. Mask-RCNN 2017

领域专家

  1. Ross Girshick (rbg 大神)
  2. Kaiming He, Facebook人工智能实验室科学家Kaiming He
  3. Shaoqing Ren
  4. Jian Sun
  5. phd,zdz