目标检测(物体检测, Object Detection) 专知荟萃
- 入门学习
- 进阶文章
- 综述
- Tutorial
- 视频教程
- 代码
- 领域专家
入门学习
- 图像目标检测(Object Detection)原理与实现 (1-6)
- [http://www.voidcn.com/article/p-xnjyqlkj-ua.html]
- [http://www.voidcn.com/article/p-ypylfzuk-ua.html]
- [http://www.voidcn.com/article/p-pfihszbt-ua.html]
- [http://www.voidcn.com/article/p-hcvjcaqy-ua.html]
- [http://www.voidcn.com/article/p-kjogyjfz-ua.html]
- [http://www.voidcn.com/article/p-zqfjjomb-u.html]
- . 基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文
- R-CNN:论文笔记
- Fast-RCNN:
- 深度学习物体检测(三)——FAST-RCNN:
- [http://www.itwendao.com/article/detail/374785.html]
- Fast-RCNN:[https://zhuanlan.zhihu.com/p/24780395]
- Faster-RCNN:
- FPN:
- Feature Pyramid Networks for Object Detection 论文笔记:
- [http://blog.csdn.net/jesse_mx/article/details/54588085]
- CVPR 2017论文解读:特征金字塔网络FPN:
- [http://www.sohu.com/a/159780794_465975]
- FPN(feature pyramid networks)算法讲解:
- [http://blog.csdn.net/u014380165/article/details/72890275]
- R-FCN:
- 基于区域的全卷积网络来检测物体:
- [http://blog.csdn.net/shadow_guo/article/details/51767036]
- [译] 基于R-FCN的物体检测:
- [http://www.jianshu.com/p/db1b74770e52]
- SSD:
- Single Shot MultiBox Detector论文阅读:
- [http://blog.csdn.net/u010167269/article/details/52563573]
- 【深度学习:目标检测】RCNN学习笔记(10):SSD:Single Shot MultiBox Detector:
- [http://blog.csdn.net/smf0504/article/details/52745070]
- 翻译SSD论文(Single Shot MultiBox Detector),仅作交流:
- [http://blog.csdn.net/Ai_Smith/article/details/52997456?locationNum=2&fps=1]
- CNN目标检测与分割(三):SSD详解:
- [http://blog.csdn.net/zy1034092330/article/details/72862030]
- SSD关键源码解析:
- [https://zhuanlan.zhihu.com/p/25100992]
- YOLO:
- YOLO:实时快速目标检测:
- [https://zhuanlan.zhihu.com/p/25045711]
- YOLO详解: [https://zhuanlan.zhihu.com/p/25236464]
- YOLO升级版:YOLOv2和YOLO9000解析:
- [https://zhuanlan.zhihu.com/p/29816334]
- YOLO升级版:YOLOv2和YOLO9000解析:
- [https://zhuanlan.zhihu.com/p/29816334]
- YOLO v2之总结篇(linux+windows):
- [http://blog.csdn.net/qq_14845119/article/details/53589282]
- YOLOv2 论文笔记:
- [http://blog.csdn.net/jesse_mx/article/details/53925356]
- DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统
- PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]
- 深度学习论文笔记:DSSD - [http://jacobkong.github.io/posts/2938514597/]
- DSOD
- 复旦大学Ph.D沈志强:用于目标检测的DSOD模型(ICCV 2017) | 分享总结:
- [http://www.sohu.com/a/198226907_114877]
- 目标检测—DSOD: Learning Deeply Supervised Object Detectors from Scratch:
- [http://blog.csdn.net/zhangjunhit/article/details/77247695]
- Focal Loss:
- Focal Loss:
- [http://blog.csdn.net/u014380165/article/details/77019084]
- 读Focal Loss:
- [https://zhuanlan.zhihu.com/p/28873248]
- Soft-NMS:
- OHEM:
- 论文笔记 OHEM: Training Region-based Object Detectors with Online Hard Example Mining:
- [http://blog.csdn.net/u012905422/article/details/52760669]
- Mask-RCNN 2017:
- Mask-RCNN 2017:
- [http://blog.csdn.net/inuchiyo_china/article/details/70860939]
- 目标检测分割—Mask R-CNN:
- [http://blog.csdn.net/zhangjunhit/article/details/64920075?locationNum=6&fps=1]
- 解读|Facebook 何凯明发大招:Mask R-CNN 狙击目标实例分割:
- [http://www.sohu.com/a/130676187_642762]
- 目标检测之比较
- 目标检测之RCNN,SPP-NET,Fast-RCNN,Faster-RCNN:
- [http://lanbing510.info/2017/08/24/RCNN-FastRCNN-FasterRCNN.html]
- RCNN, Fast-RCNN, Faster-RCNN的一些事:
- [http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/]
- 机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN , 目标检测补习贴之YOLO实时检测, You only look once :
- [http://nooverfit.com/wp/]
- 目标检测算法:RCNN、YOLO vs DPM:
- [https://juejin.im/entry/59564e1f6fb9a06b9c7408f9]
- 如何评价rcnn、fast-rcnn和faster-rcnn这一系列方法?:
- [https://www.zhihu.com/question/35887527]
- 视觉目标检测和识别之过去,现在及可能
进阶文章
Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:
R-CNN
Rich feature hierarchies for accurate object detection and semantic segmentation:
Fast R-CNN
:
Faster R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:
Scalable Object Detection using Deep Neural Networks
Scalable, High-Quality Object Detection
SPP-Net
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
DeepID-Net
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
Object Detectors Emerge in Deep Scene CNNs
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
Object Detection Networks on Convolutional Feature Maps
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
DeepBox: Learning Objectness with Convolutional Networks
Object detection via a multi-region & semantic segmentation-aware CNN model
You Only Look Once: Unified, Real-Time Object Detection
YOLOv2 YOLO9000: Better, Faster, Stronger
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
DenseBox: Unifying Landmark Localization with End to End Object Detection
SSD: Single Shot MultiBox Detector
DSSD : Deconvolutional Single Shot Detector
G-CNN: an Iterative Grid Based Object Detector
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
A MultiPath Network for Object Detection
R-FCN: Object Detection via Region-based Fully Convolutional Networks
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
Feature Pyramid Networks for Object Detection
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
DSOD: Learning Deeply Supervised Object Detectors from Scratch
Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research
- Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research
- http://arxiv.org/abs/1703.06870
综述
- 深度学习之 “物体检测” 方法梳理
- 地平线黄李超开讲:深度学习和物体检测!:
- 对话CVPR2016:目标检测新进展:
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:
- 基于深度学习的目标检测研究进展
- 讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望
Tutorial
- CVPR’17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick
- ICCV 2015 Tools for Efficient Object Detection
- Object Detection
- Image Recognition and Object Detection : Part 1
- R-CNN for Object Detection
视频教程
- cs231 第11讲 Detection and Segmentation
- Deep Learning for Instance-level Object Understanding by Ross Girshick.
代码
- R-CNN
- Fast R-CNN:
- [https://github.com/rbgirshick/fast-rcnn]
- github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
- github: https://github.com/mahyarnajibi/fast-rcnn-torch
- github: https://github.com/apple2373/chainer-simple-fast-rnn
- github: https://github.com/zplizzi/tensorflow-fast-rcnn
- Faster R-CNN
- github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
- github: https://github.com/rbgirshick/py-faster-rcnn
- github: https://github.com/mitmul/chainer-faster-rcnn
- github: https://github.com/andreaskoepf/faster-rcnn.torch
- github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
- github: https://github.com/smallcorgi/Faster-RCNN_TF
- github: https://github.com/CharlesShang/TFFRCNN
- github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
- github: https://github.com/yhenon/keras-frcnn
- SPP-Net
- YOLO
- github: https://github.com/gliese581gg/YOLO_tensorflow
- github: https://github.com/xingwangsfu/caffe-yolo
- github: https://github.com/frankzhangrui/Darknet-Yolo
- github: https://github.com/BriSkyHekun/py-darknet-yolo
- github: https://github.com/tommy-qichang/yolo.torch
- github: https://github.com/frischzenger/yolo-windows
- github: https://github.com/AlexeyAB/yolo-windows
- github: https://github.com/nilboy/tensorflow-yolo
- YOLOv2
- github(Chainer): https://github.com/leetenki/YOLOv2
- github(Keras): https://github.com/allanzelener/YAD2K
- github(PyTorch): https://github.com/longcw/yolo2-pytorch
- github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
- github(Windows): https://github.com/AlexeyAB/darknet
- github: https://github.com/choasUp/caffe-yolo9000
- github: https://github.com/philipperemy/yolo-9000
- SSD
- github: https://github.com/zhreshold/mxnet-ssd
- github: https://github.com/zhreshold/mxnet-ssd.cpp
- github: https://github.com/rykov8/ssd_keras
- github: https://github.com/balancap/SSD-Tensorflow
- github: https://github.com/amdegroot/ssd.pytorch
- github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
- Recurrent Scale Approximation for Object Detection in CNN
- Mask-RCNN 2017
领域专家
- Ross Girshick (rbg 大神)
- Kaiming He, Facebook人工智能实验室科学家Kaiming He
- Shaoqing Ren
- Jian Sun
- phd,zdz